Thermal properties of Ga₂O₃-PbO-P₂O₅ glass system

J. Schwarz · K. Vosejpková

Received: 1 October 2010/Accepted: 4 January 2011/Published online: 12 February 2011 © Akadémiai Kiadó, Budapest, Hungary 2011

Abstract Thermal behavior of $xGa_2O_3-(50 - x)PbO-50P_2O_5$ ($x = 0, 10, 20, and 30 mol.\% Ga_2O_3$) and $xGa_2O_3-(70 - x)PbO-30P_2O_5$ ($x = 0, 10, 20, 30, and 40 mol.\% Ga_2O_3$) glassy materials were studied by thermo-mechanical analysis (TMA) and differential thermal analysis (DTA). Replacement of PbO for Ga_2O_3 is accompanied by increasing glass-transition temperature ($263 \le T_g/^{\circ}C \le 535$), deformation temperature ($363 \le T_d/^{\circ}C \le 672$), crystallization temperature ($396 \le T_c/^{\circ}C \le 640$) and decreasing of coefficient of thermal expansion ($5.1 \le CTE/ppm K^{-1} \le 16.7$). Values of Hruby parameter were determined ($0.1 \le K_H \le 1.3$). The thermal stability of prepared glasses increases with increasing of concentration of Ga_2O_3.

Keywords Gallium glasses · TMA · DTA · Hruby parameter

Introduction

Galliumphosphate glasses have been extensively studied in the last years because of their superior (for an oxide glasses) infrared transmission and nonlinear optical properties in using them in such applications as infrared windows, ultra fast optical switches, optical isolators, and other photonic devices for communications [1–7]. Gallium oxide is known as glass-former where GaO₄ and GaO₆ are the

J. Schwarz (🖂) · K. Vosejpková

Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic e-mail: jiri.schwarz@upce.cz basic structural units [2]. The addition of Ga_2O_3 to phosphate glasses leads to depolymerisation of phosphate network by disruption of P–O–P bridges to phosphate network fragments which are connected by P–O–Ga bridges [8]. These structure changes improve thermal stability, chemical durability, and other physical properties of phosphate glasses. Addition of PbO to galliumphosphate system increases especially refractive index and makes this glass system interesting for optical applications [9]. The aim of this work was the study of preparation and thermal properties of PbO–Ga₂O₃–P₂O₅ glass system.

Experimental

The studied glasses of Ga₂O₃–PbO–P₂O₅ system, see Fig. 1, were prepared in batches of 10 g from oxides PbO, Ga₂O₃, and NH₄H₂PO₄ (purity > 99.9%) in Pt-crucible with a lid. The stoichiometric amounts of oxides and NH₄H₂PO₄ were mixed and heated to the temperature $T \sim 210$ °C, in which they were kept for about 40 min due to decompose of NH₄H₂PO₄. In the next step the temperature was increased to melting point $T \sim 970-1440$ °C (depends on chemical composition) of mixture. The obtained melts were homogenized for about 30 min. Then the melt was poured onto a polished nickel plate at room temperature and glassy (confirmed by the absence of XRD patterns), colorless and transparent samples were obtained. The obtained glasses were annealed for 1 h at temperature near their glass-transition temperature (T_g).

The density (ρ) of the glasses was determined using the standard Archimedean method. The toluene was used as the referent liquid. The molar volume ($V_{\rm M}$) was calculated according to the relation: $V_{\rm M} = M/\rho$, where *M* is the average molar weight of the glass. The maximum measurement error

Fig. 1 Synthesized sample of system Ga_2O_3 -PbO-P₂O₅ and approximate glass forming region [6]

was 0.04 g cm⁻³ in the density and 0.25 cm³ mol⁻¹ in the molar volume.

The values of the dilatometric glass-transition temperature (T_{a}) , deformation temperature (T_{d}) , and coefficient of thermal expansion (CTE) were estimated from thermomechanical analysis of the samples. The cubes of glasses $5 \times 5 \times 5$ mm were heated (the heating rate of 10 K min⁻¹) in the TMA CX04 equipment (R.M.I. Pardubice, Czech Republic). The thermal stability was studied with the DTA 404 PC (Netzsch) operating in the DSC mode at the heating rate of 10 K min⁻¹. The measurement was carried out on powdered samples with mean diameter $d_{50} \sim 10 \ \mu m$ placed in silica glass crucibles. The glass transition temperature (T_g^*) , crystallization temperature $(T_{\rm c})$, and melting temperature $(T_{\rm m})$ were estimated from the DTA curves. The values of T_g , T_d , T_g^* , T_c , and T_m were found out with error of ± 2 °C. The maximum measurement error was ± 0.2 ppm K⁻¹ in the CTE.

Using this way the glassy samples were obtained (confirmed by the absence of XRD patterns), and also partly crystallized samples as evident from Fig. 1 where the approximate glass forming region is displayed.

Results and discussion

Seven samples from the Ga₂O₃–PbO–P₂O₅ system were prepared and investigated. By chemical composition the glasses studied can be divided into two compositional series A: xGa_2O_3 –(50 – x)PbO–50P₂O₅ (x = 0, 10, 20,and 30 mol.% Ga₂O₃) and series B: xGa_2O_3 –(70 – x) PbO–30P₂O₅ (x = 0, 10, 20, 30, and 40 mol.% Ga₂O₃), seeFig. 1.

As is evident from Fig. 1, two samples are partially crystallized in spite of quenching them between copper

Fig. 2 The compositional dependency of density and molar volume of xGa_2O_3 -(50 - x)PbO-50P₂O₅ series. The *dashed lines* are only guides for the eyes

Fig. 3 The compositional dependency of density and molar volume of xGa_2O_3 - $(70 - x)PbO-30P_2O_5$ series. The *dashed lines* are only guides for the eyes

blocks. The presence of white crystal phase of GaPO₄ in $30Ga_2O_3$ -20PbO-50P₂O₅ sample and presence of Pb₅P₄O₁₅ white crystal phase in 70PbO-30P₂O₅ sample were confirmed by X-ray diffraction. The other ones were prepared by slow cooling of the melt on the nickel plate and glasses without all possible inhomogeneities were prepared. The obtained glasses are colorless except the glass of composition $10Ga_2O_3$ -40PbO-50P₂O₅ in which the yellowish tinge is evident. The study glasses are in accordance with approximate glass forming region [6], see Fig. 1.

The compositional dependency of glass density (ρ) and molar volume ($V_{\rm M}$) are present in Fig 2 (series A: $3.62 \le \rho/{\rm g \ cm^{-3}} \le 4.66$ and $39.1 \le V_{\rm M}/{\rm cm^{-3}} \ {\rm mol^{-1}} \le$ 47.5), respectively, Fig. 3 (series B: $4.77 \le \rho/{\rm g \ cm^{-3}} \le$ 6.40 and $31.0 \le V_{\rm M}/{\rm cm^{-3}} \ {\rm mol^{-1}} \le 38.7$). By replacing of heavy PbO for lighter Ga₂O₃ the glass density decreases and the molar volume increases in both series of prepared samples. The slope of these dependencies is linear except partially crystallized samples which are out of linear trend. This behavior is especially evident in compositional dependency of molar volume.

The values of T_{g} , T_{d} , and CTE (in interval 100–200 °C) evaluated from thermo-mechanical curves are shown in Fig. 4 (series A: $325 \le T_g^*/^{\circ}C \le 447, 361 \le T_d/^{\circ}C \le 672$, and $5.1 \leq \text{CTE/ppm K}^{-1} \leq 16.0$) and Fig. 5 (series B: $263 \leq T_{g}^{*}/^{\circ}C \leq 535, 454 \leq T_{d}/^{\circ}C \leq 582, \text{ and } 8.9 \leq CTE/$ ppm $K^{-1} \le 16.7$). There is evident, for A and B series, in which PbO is substituted by Ga_2O_3 , T_g , and T_d increases, while the values of CTE decreases. The linear dependence of CTE, T_{g} , and T_{d} on the chemical composition has been found. The value of $T_{\rm g}$ and $T_{\rm d}$ of partially crystallized sample of 30Ga₂O₃-20PbO-50P₂O₅ is out of glassy sample trends. From Fig. 5 we can see the linear decrease of values CTE and linear growth values of T_{g} and T_{d} with increasing of Ga₂O₃ in the region 10-40 mol.% Ga₂O₃ in series B. Missing value T_d of 70PbO-30P₂O₅ sample is higher than the measuring range of the used analyzer (20-800 °C).

The values estimated from the DSC curve measured by differential thermal analysis are showed in Fig. 6 (series A: $338 \le T_g^*/^\circ C \le 458$, $396 \le T_c/^\circ C \le 611$, and $666 \le T_m/^\circ C \le 744$) and Fig. 7 (series B: $257 \le T_g^*/^\circ C \le 535$, $410 \le T_c/^\circ C \le 640$, and $788 \le T_m/^\circ C \le 915$). We can see that the obtained compositional dependencies of T_g^* are in accordance with T_g (measured by TMA) for both series. The linear increase of values T_c with increasing Ga₂O₃ is evident, except partially crystallized sample 70PbO– $30P_2O_5$. The melting temperatures trend is very similar to trend of T_g^* in series A, but in the series B the increasing

Fig. 4 The compositional dependency of the dilatometric glasstransition temperature (T_g), deformation temperature (T_d), and coefficient of thermal expansion (CTE; 100–200 °C) of xGa₂O₃– (50 – x)PbO–50P₂O₅ series. The *dashed lines* are only guides for the eyes

Fig. 5 The compositional dependency of the dilatometric glasstransition temperature (T_g), deformation temperature (T_d), and coefficient of thermal expansion (CTE; 100–200 °C) of xGa₂O₃– (70 – x)PbO–30P₂O₅ series. The *dashed lines* are only guides for the eyes

Fig. 6 The compositional dependency of the glass-transition temperature (T_g^*) , crystallization temperature (T_c) , and melting temperature (T_m) of xGa_2O_3 -(50 - x)PbO-50P₂O₅ series. The *dashed lines* are only guides for the eyes

concentration of Ga_2O_3 is accompanied by decreasing values of T_m .

The values of thermal stability were established by relation: $K_{\rm H} = (T_{\rm c} - T_{\rm g}^*)/(T_{\rm m} - T_{\rm c})$; where $K_{\rm H}$ is Hruby parameter of glass stability [10]. The compositional dependency $K_{\rm H}$ of glassy samples is presented in Fig. 8 for both series. The increase of thermal stability with increase of concentration of Ga₂O₃ is evident in phosphate glasses. This result is in accord with other gallium-phosphate glasses, in which Ga₂O₃ acts as glass-networker even at low concentrations [4, 8, 11]. Thermal stability of the studied glasses in comparison with glasses of Li₂O–TiO₂– P₂O₅ [12] is lower due to the efforts to form a stable phase of GaPO₄.

Fig. 7 The compositional dependency of the glass-transition temperature (T_g^*) , crystallization temperature (T_c) , and melting temperature (T_m) of xGa_2O_3 - $(70 - x)PbO-30P_2O_5$ series. The *dashed lines* are only guides for the eyes

Fig. 8 The compositional dependency of Hruby parameter, respectively, of thermal stability for glasses of series A: $xGa_2O_3-(50 - x)$ PbO-50P₂O₅ and series B: $xGa_2O_3-(70 - x)$ PbO-30P₂O₅. The *dashed lines* are only guides for the eyes

Conclusions

In this study, we have shown the preparation of two series of Ga_2O_3 -PbO-P₂O₅ glassy materials, which were

characterized by physico-chemical and thermal properties. The density of prepared materials decreases and the molar volume increases with the increase of Ga_2O_3 content. The thermo-mechanical analysis showed increases of T_g , T_d and decreases of CTE while PbO is substituted by Ga_2O_3 . Composition dependence of Hruby parameter (estimated by DTA) indicated increasing thermal stability with increasing concentration of Ga_2O_3 .

Acknowledgements We acknowledge the support from the research project GA 106/08/P199 of the Czech Science Foundation and research project MSM0021627501 of the Ministry of Education, Youth and Sport of the Czech Republic.

References

- Dumbaugh WH, Lapp JC. Heavy-metal oxide glasses. J Am Ceram Soc. 1992;75(9):2315–26.
- Lapp JC, Dumbaugh WH. Gallium oxide glasses. Key Eng Mater. 1994;94–95:257–78.
- 3. Shelby JE. Lead galliate glasses. J Am Ceram Soc. 1988;71(5): 254–6.
- Ilieva D, Jivov B, Bogachev G, Petkov C, Penkov I, Dimitriev Y. Infrared and Raman spectra of Ga₂O₃–P₂O₅ glasses. J Non Cryst Solids. 2001;283(1–3):195–202.
- Flower GL, Reddy MS, Baskaran GS, Veeraiah N. The structural influence of chromium ions in lead gallium phosphate glasses by means of spectroscopic studies. Opt Mater. 2007;30(3):357–63.
- Subbalakshmi P, Veeraiah N. Dielectric dispersion and certain other physical properties of PbO–Ga₂O₃–P₂O₅ glass system. Mater Lett. 2002;56(6):880–8.
- Berthet P, Bretey E, Berthon J, d'Yvoire F, Belkebir A, Rulmont A, et al. Structure and ion transport properties of Na₂O-Ga₂O₃– P₂O₅ glasses. Solid State Ionics. 1994;70–71(Part 1):476–81.
- Hoppe U, Ilieva D, Neuefeind J. The structure of gallium phosphate glasses by high-energy X-ray diffraction. Z Naturforsch A J Phys Sci. 2002;57(8):709–15.
- Ticha H, Schwarz J, Tichy L, Mertens R. Physical properties of PbO–ZnO–P₂O₅ glasses—II. Refractive index and optical properties. J Optoelectron Adv Mater. 2004;6(3):747–53.
- Hruby A. Evaluation of glass-forming tendency by means of DTA [Article]. Czechoslovak J Phys Sect B. 1972;B 22(11):1187.
- Hoppe U, Ilieva D, Neuefeind J. The structure of gallium phosphate glasses by high-energy X-ray diffraction. Z Naturforsch. 2002;57(1):709–15.
- Mošner P, Vosejpková K, Koudelka L. Thermal behaviour, properties of Na₂O–TiO₂–P₂O₅ glasses. J Therm Anal Calorim. 2009;96:469–74.